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Monte Carlo simulations are performed in a five-dimensional lat8¢#2) Yang-Mills theory with a
compactified extra dimension, and scaling laws are studied. Our simulations indicate that, as the compactifi-
cation radiusk decreases, the confining phase spreads more and more to the weak coupling regime, and the
effective dimension of the theory changes gradually from five to four. Our simulations also indicate that the
limit a,— 0 with R/a, kept fixed exists in both the confining and deconfining phasBédf, is small enough,
wherea, is the lattice spacing in the four-dimensional direction. We argue that there exists a maximal radius
above which the color degrees of freedom are not confined. Comments on deconstructing extra dimensions are
given.
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[. INTRODUCTION dimensions. For the first time, W8] computed the latticg
function in a Yang-Mills theory in more than four dimen-
Since Kaluza and Kleifit] found that the electromagnetic sions, and verified nonperturbatively the power-law running
and gravitational forces can be unified by introducing a fifthof the gauge coupling constajt,9-11.
dimension, their idea has attracted attention for many de- In this paper we would like to extend the analyse$&if
cades. Recently, there has been a lot of renewed interest We first observe that if the compactification radius becomes
field theories with extra dimensions, in which the lengthsmaller and smaller, the confining phase spreads more and
scale of the extra dimensions can be so large that they coul@ore to the weak coupling regime. At the same time we
be experimentally observel®—4]. It is assumed that, for compute the effective dimensidii2,13, and see that the
distances larger than the compactification size, the massi@€ory behaves more and more as a four-dimensional Yang-
Kaluza-Klein excitations decouple so that these theories beVlills theory. Based on this result, we argue that the color
have as a four-dimensional continuum theory at low enerdegrees of freedom are confined only R Rpa,. The con-
gies. Since, however, Yang-Mills theories in more than fourlining phase is defined by the string tension between two
dimensions are nonrenormalizable, it is not at all clear thaPtatic quarks that are separated in the four-dimensional sub-
the infinite tower of the Kaluza-Klein excitations decouplesSPace- This definition of phase should not be confused with

even if each massive excitation is suppressed: A naive expe 1€ def|_n|t|on b_y the Polyako.v loop that extends into the fifth
) . L imension, which was mentioned above.
tation of their contribution would be>-0.

In four dimensions, the color degrees of freedom are con- Our calculations of the potential between two_static
. ' 9 .~ quarks separated in the four-dimensional subspace show that
fined even for a weak gauge coupling. How can a confinin

; ) ) ) %he deconfining phase is a Coulomb phase. We then discuss
four-dimensional Yang-Mills theory emerge from a higher-,o natyre of the transition from the deconfining phase to the
d|menS|ona! Yang-M|IIs theory which is deconflnmg. in the confining phase for fixed values &/a,, wherea, is the
weak coupling regimg5—7]? Although the assumption of |atice spacing in the four-dimensional direction. We confirm
the decoupling of the Kaluza-Klein excitations sounds physithat if R/a, is small enough, it is consistent with a second
cally correct, it is by no means trivial to show that they grder transition. Combined with the result [&], we there-
nonperturbatively decouple in such a way that the color confore come to the conclusion that, as we decrease the value of
finement takes place even at weak gauge coupling. RecentligA | the first order transition for large values R\ changes

we [8] started to address related problems in a concrete exXp 5 crossover transition, and finally becomes of second or-
ample, namely, the pure lattic®U(2) Yang-Mills theory in  der,

five dimensions with one dimension CompaCtified on a circle. We give some nonperturbative comments on deconstruct_
We observed8] that the compactification changes the naturejng extra dimension§14] in the Conclusion.

of the phase transition, and that a second order phase transi-

tion, which does not exist in the uncompactified case, occurs,

thus confirming the long-standing expectation of Lang, Pilch,

and Skagerstarf6]. The phase is defined by the Polyakov Il EFFECTIVE DIMENSION

loop that extends into the fifth dimension, and the phase In order to take into account the compactification effects
transition is expected to be of second order, because the conm this theory, it is crucial to use anisotropic latticEk5]
pactifiedSU(2) lattice gauge theory in five dimensions be- which have different lattice spacings, andas in the four-
longs to the universality class of th®& spin model in four dimensional directions and in the fifth direction. For definite-
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ness we employ the Wilson action for pugdJ(2) lattice 1
gauge theory:
0.8 r
DISF - greren,
S=— 1--ReTlUp |+ 1--ReTlUp_|,
5 P24 > P, ,37’;5 > Py | :
(2.1 06 2,
GL1/2 “;‘
where Up, denote plaquette variables in the four- oa *,
dimensional sublattice, and p, are those that are extended ' .“‘;.
into the fifth dimension. The gauge coupling constghas °?5;§ .
the dimension of|/a,, which is related tq3 by 0z r T
295"~ pl4 2 ® %8 3 32 34 36 38

at the tree level. Periodic boundary conditions are imposed in B

all directions, and we use a lattice size of the fdkri‘nx Nsg
(we mostly useN,=12 andNs;=4). The compactification
radius is defined aR=asNs/27 if Nja,>Nsag is satisfied,
and the correlation-anisotropy parameter is definedéas
—ay/as. The tree level relatiory= ¢ will be modified at the  \yhere b=22/3-2/3=20/3. Therefore, the evolution equa-
quantum level[15], and throughout this paper we assumeyion for g2 can be easily integrated in the case thatZa,

that the&-y relation obtained iff8] is satisfied in both the g kept fixed whilea, changes. We obtain for this case
confining and deconfining phases. Simulations are performed

FIG. 1. Jxo= Vo, versusB at y=>5.0. The filled symbols are
obtained from the Creutz rati®.1) and the open ones are obtained
from the static potential3.2).

for 2b 1 B U(Deri—4)
| Zite 2"
v=3.6,4.0,4.6,5.0, (2.3 16m< Ve T
which is equivalent t¢8] It is important to notice that aB.4—4 we obtain the loga-
rithmic form
27TR N5a5 4
a, a, 23%0'72'0'64’0'55'0'50’ (2.4 g~ 2= BI87=(2b/167?)In a,+ const. (2.9

where we have usels=4 above. We chose this range of That is, if we can show that the effective dimensidgy in

2mR/a, because we expect from the previous calculationghe confining phase varies from 5 to 4 asf2/a, decreases

[8] that the limit 27R/a,—0 may exist, and we observe from a larger value to a smaller value, we show the continu-

some scaling behavior. ous decoupling of the Kaluza-Klein excitations, and the con-
To define the physical scale in the confining phase, we usBning phase spreads more and more to the weak coupling

the string tensiomr between two static quarks that are sepa-fegime asR decreases.

rated in the four-dimensional subspace. Since the string ten-

sion is a physical quantity, the lattice string tension [1l. CONFINING PHASE

should behave Iikai asa,—0, wherea, can be related by

. ) . . Now we come to the results of our Monte Carlo simula-
the B function to the dimensionless bare gauge coupling

tions on a 12x4 lattice. We use the Creutz ratig(l,J)
obtained from the rectangular Wilson loop8(1,J) with

8
gz=—=Ag§, (2.5 lengths ofl andJ in the four-dimensional subspace. We as-
B sume that the Creutz ratio takes the form
where we have identifiedA with 2w/a, because 4 1 1
><(7-r/a4)2:.(277/a4)2.. Since ‘we expect th.at the .massive x(1,9)=x0—x1 =1 + 331 )
Kaluza-Klein excitations will decouple increasingly as ( ) ( )
2mR/a, decreases, the lattiggfunction 8, cannot assume a 1
purely five- or four-dimensional form. Instead, we expect a + x> m) (3.1

continuous change of its form. This is quantitatively ex-
pressed by the so-called effective dimendibg, which is a

function of 27R/a, [13]. So we assume th#, can be writ- and we identifyy, with the lattice string tensiomr . We

generated 2500 configurations for each simulation point after

ten as thermalization, and the Wilson loops were measured every
dg? b five configurations for the calculation of a Creutz ratio. Er-

BL=— a“d_ —[Des(27RIa,) — 4]g2— - g% rors were estimated by the Jackkmfe method. The filled sym-

a 167 bols in Fig. 1 are the result obtained from the Monte Carlo

(2.6) simulations withy=5.0, where the vertical axis stands for
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FIG. 2. The scaling behavior afY? for different values ofy. FIG. 3. The effective dimension as a function of the numbef

The solid lines are drawn by using E€.7), whereD, is taken data points that are used for a fit. We increasgarting from 4 until
), ) o
from Table I. The data with a filled symbol are used for the fit. (e value of Deg—4) "~ becomes stabilized.

Vxo= /o and the horizontal axis stands f@. We have computing facility given to us. Below we sketch how we
also calculatedr, from the static potential to make sure that confirm Eq.(2.7) and computeD 4.
oL obtained from the Creutz ratios is reIiaBIé’.he static The effective dimension can be obtained by ﬁtting the
potential we have assumed has the form function (2.7) to the data. To this end, we first choose four
neighboring data points that lie around the middle of the data
)+C3X, (3.2)  setfor a giveny, and using these points, we fit the function
(2.7) to obtain the effective dimensioriln the case ofy
=5.0, for instance, we use the data points At
=3.20,3.22,3.24, and 3.26Then we increase the number of
the data points to be used by 2 by including the next neigh-

X

1 1
V(X)ZCO_ClX—i_CZ i_

where[ 1/X] is the three-dimensional Coulomb potential on a
lattice, and is given by

) ] boring data point on both sides. In doing so, we obtain the
1 = d% eXP{'Z Xisin( pilz)] effective dimension and alsq? per degree of freedom
[Y} =4 j 3 7 . (3.3 (DOF) as a function of numben of the data points that are
~m(27) 2 Sir2(pi/2) used for the fit. We repeat the same analysis for the different
i=1 Pi values of 2rR/a, given in Eq.(2.4). The results are shown

o ~in Figs. 2 and 3 and in Table I. In Fig. 3, the vertical axis
The open symbols in Fig. 1 correspond to the result obtainedtand for Ps—4) ! and the error bar is computed from
from the static potential. Cor_nparing Fhe two re'sults in Fig. 1X2/DOF. We see that as increases the error bar decreases
we see that the lattice string tensions obtained from the g he central values converge. The results are summarized
Creutz ratios agree with those obtained from the static poy, Taple 1 and we see that the effective dimensipg de-
tential. We made the same comparison for different values of oo éradually from 4.70%E) to 4.523082) as y in-

v, and found the same result. So in the following analyse%reases from 3.6 to 5.0. which means asR?a, decreases
we use only the lattice string tensions from the Creutz ratiog.o g 72 to O.é[see E.qi(2.4)]. 4

because we have more data for this case and we do not want The g*

in Table | is the value at whiclr, and henca
to mix data obtained by two different methods. L 4

¢ . hat ab h ¢ should vanish if the theoretical assumpti¢h?) is correct
We see from Fig. 1 that aboye=3.0 the square root of -, 5 extrapolated for larger values Bf(see also Fig. 2

the lattice string tensioNo_ first decreases linearly unf®  \ye emphasize that our results indicate that the lagit-0

~3.3, and then its slope becomes milder. The tail for I8ge ith R/a, kept fixed exists in the confining phase at finite
is certainly due to the finite lattice size effects, but the

change from the linear decrease @&, to a milder one

aroundB~ 3.3 may indicate that the theoretical expectation

(2.7) is correct. Although it is in principle possible to check

by increasing the lattice size how much finite lattice size ] 5 N

effects may be contained in the tail ¢, it is impossible RA Detr (Bmin:Pmar)  XIDOF A

to do this at the moment because of the limitations of the3.6 0.72 4.705B5 (2.30:2.76  0.525  3.00723)
40 0.64 4.64564) (2.50:2.96 0.438 3.28622)
46 055 456965 (2.80:3.26 0.778  3.72636)

we give more details of calculating the static potential in Sec. V5.0 0.50 4.523B2 (3.00:3.46 0.598 4,05743)
when calculating the potential in the Coulomb phase.

TABLE |. Effective dimension for different values of (A
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IV. THE MAXIMAL RADIUS straint(4.1) can be converted to that of an effective dimen-

sion, i.e.,D¢r(RM3z) <4.13. Therefore, if we know the func-

th Thg sanf1ethanaly5|s |ntr_;a_al ?CD 'rlj.sec.' - WCOEL)”d Cﬁ.nf‘tra'ntion D¢(t) exactly, we can calculate the rangetébr which
e size of the compacitification radius in QCD, whic Wethe inequality (4.1) is satisfied. From the results given in

would like to estimate without detailed calculations. Our €STable | we find that the effective dimension as a function of

fcima_lt_e below is based on many assumptions that cannot b[ecan be written a® .¢(t) =4+ t. Assuming that this function
justified at present, and so the number we obtain should n%tan be used even for small we then obtainRA=<0.13
be taken seriously. But it is worthwhile to do this to see whatwhich would imply that IlR=0(1). TeV should b; s.ati’s—

ﬁg?: :)e]]igg?:lsgnﬁ?n:trs involved if one would like to do a fied for the color degrees of freedom in QCD to be confined.
: There are various problems involved in our estimates

To see that there exists a maximal radius for color Con'above, apart from the main assumptions that B46) is

T e e esal i gorect in OCD, the efective dmersiday () can be ex.
P % apolated for smaller values ¢falthough we know it only

section: for 0.5<t=<0.72, and the formD.u(t)=4+t remains the

2> (=)(D.v—4)(1672/2b 4.1 same in QCD. One is the identificationr?a,= A, and the

9°=(=)(Der—4)(16m ) @D other isg(A)=gr(u=2m/a,), wheregr(u) is a renormal-

for the (de)confining phase. Therefore, for a given value of iZzed gauge COUP"”Q with the renorm_ahzatlon scplen a
Dy, there should exist a smallest valuegdffor color con- certain renormalization scheme. The first one comes from the
finement to occur, which is~(Dgy—4)(1672/2b). The assumption that we are very close to a continuum theory that

question is howg? can be related to the gauge couplig\ﬁ possesses a four-dimensional rotational invariance. The sec-

of Kaluza-Klein theory, the four-dimensional theory with a ©Nd one comes from the fact thaayc. and Ays are not
Kaluza-Klein tower. At the tree level, it isg? very much different in QCD so that the value of the bare

=g2(27RA) %, but in higher orders this relation will re- |attice gauge coupling(A) is approximately equal to that of
ceive quantum corrections, where we have usd the renormalized gauge COUp“%‘({“:A)' In or.der to Jus-
— (mlag)?x 4. To answer the,question we first assume tha{lfy these assumptions and obtain more reliable relations

. _ . . among them, we first of all have to refine and extendtke
Eififgr?/gf)gziégz)ﬁj?r%[xto[& (1003]) and we consider a redef relation given in Eqs(2.3) and (2.4), which were obtained

only for 8<1.8 for theSU(2) theory in[8]. More important
dt !s that, apart from the fact that we have.to do the calqulations
g5.=7 “(RA)g?, ﬂ(t)zexpf —[Der(t’)—41. in the case ofSU(3), we should consider the continuum
ot limit with the compactifcation radiuR kept fixed. This will
(4.2 be necessary to introduce a real physical scale and to relate
the string tension t&.

Note that theg function of g§, becomes Therefore, our estimate ., above should not be taken
5 4 seriously. However, simulations on five-dimensional, com-
Bi= —(2b/167°) n(RA) G- (4.3 pactified SU(3) lattice gauge theory would go beyond the

) ] . scope of the present paper, and we would like to leave this
Since the function(RA) becomes proportional tRA as  problem to future work. The crucial point is that there exists
RA—=,” the new gauge coupling describes a power-lawy maximal radius.

behavior[4,9-11. Furthermore, we see from E¢.2) that
gﬁk approachesg)® as RA approaches 0. Recalling now the V. COULOMB PHASE

assumption thab e approaches 4 aBA approaches 0 and The confining phase shrinks & decreases, which we

Ed. (2.8), we see that the renormalization group flow of thehave already seen above. Next we would like to show that

H 2
new gauge couplingy for smallRA takes exactly the same the deconfining phase is a Coulomb phase. To begin with, we
form as the one for the effective, four-dimensional theory . h N ' i ’
without the Kaluza-Klein tower. Therefore, we assume thaonsider the Wilson loopV(x,t) at the tree level in con-

gﬁk is the gauge coupling of the four-dimensional theory Withtinuum perturbation theory. The static potential can be ob-

the Kaluza-Klein tower. tained from
Now, suppose that QCD results from a five-dimensional V(x) = lim[InW(X,t) ]/t
QCD. As we have argued abovg? becomesgy, at low e '
energies, and we then identifyr2a, with the physical scale
A of the effective theory, rather than with the ultraviolet _ E 2 11 cotl—(i)
cutoff. Sinceng(Mz)/47-r~—~O.12 in QCD anth=7, the con- B 49527TR 4rx 2R
1 ( X
°The proportionality constant depends Pry as a function of, 3 ) A2x2 2R<1 '
which, however, depends on the regularization 4484l Therefore, = ngx (5.7
the lattice regularization does not reproduce the same coeffl@gnt L i (i>l
obtained in[4]. 27R 4wx |\ 2R
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0.35 ‘ , - - the result(filled symbols for the lattice potential/, (X) as a
function of X at 8=5.0 andy=>5.0 (which is equivalent to
27R/a,=0.5). The conditiorx/2R>1 to obtain a IX po-
H{H:{E } } o tential becomeX>1/2 in this case, and we assume that the
0.3 3 ﬁE'E 1 lattice potentiaV, (X) takes the form
i
3

1 1
® VLX) =Co=Cayp +Co| ¢ —

VI(X),V(X)

1
” X ) (5.9
0.25 | %
where[ 1/X] (the three-dimensional Coulomb potential on a
lattice) is given in Eq.(3.3). The first term of Eq(5.4) is the
unphysical self-energy, the second term is the rotationally
0.2 : : : : invariant part of the Coulomb potential, and the third term is
X the most dominant part of its breaking. Fronyfit we find
that Cy=0.3230(14)C,=0.1086(30), ancC,=0.0776(27).
FIG. 4. The Coulomb potenti#b.2). The filled symbols are the The fitted lattice potential with th€, term in Eq.(5.4) sup-
raw data points, and the dotted line\i§X) of Eq. (5.5 with C, pressed, i.e.,
=0.3230(14) andC,=0.1086(30). The open symbols stand for the
rotationally invariant data points.

T

1
V(X)=Co=Ciy, (5.9
We have the usual Coulomb potential fo?R>1, and we

see that the dimensionless gauge coupiingormalized for is the dotted curve in Fig. 4, while the open symbols stand
four-dimensional Yang-Mills theory at the tree level, is givenfor the rotationally invariant data points. We see that the data

by g=gs/+27R, as is well knowr{3,4]. The corresponding Justify the assumption that the deconfining phase is a Cou-
expression on a lattice is lomb phase.

VLX) = lim InW(X,T)/W(X,T+1), (5.2 VI. NATURE OF THE PHASE TRANSITION

Tow

As the next task we consider the nature of the transition
whereW(X,T) is a lattice Wilson loop. The lattice distances from the confining phase to the Coulomb phase. In the con-
X and T are made dimensionless by dividing by. We are  fining phase our data indicate that the limjt— 0 with R/a,
interested in the potential between two static quarks that arkept fixed exists at finitg3. If we can show that, also
separated in four dimensions, and therefér@ndT are sup- vanishes at the same value gfin the Coulomb phase, the
posed to be in the four-dimensional sublattice. Since in théransition from the confining phase to the Coulomb phase is
actual calculations we cannot take the limit-, we con-  of second order.
sider also off-axis loops and use the standard smearing tech- To this end, we have to define the scale in the Coulomb
niques[16] to improve the convergence of approximantsphase. In the naive continuum theory there are two dimen-
with increasingT. Our smearing procedure consists of itera-sional quantities, the gauge coupligg and the compactifi-
tively replacing each spatidthree-dimensionallink by the  cation radiusR. Therefore, we assume thRtand the low-
sum of itself and the neighboring four spatial staples with aenergy value ofj; are independent physical quantities at the

weight parametee: quantum level, too. We then consider the lirajf—0 with
2wR/a, kept fixed, which is the same limiting process we
Ui(x,y)— Ui (x,y) have considered in the confining phase. In this limit, the
3 quantity gé/ZwR [the coefficientC, of the tree level Cou-

_ lomb potential(5.4)] has to diverge becaus®—0 while g
=P Ui(x,y)+ Fi(xy)|, (5.3 A 4 i 5
sua)| Uixy) ej(gzl i) |, 5.3 should remain finite by assumption. So naively one expects
the scaling lawC; *~R~a,~(8— B8*), where g* is the

Fi(,y) =U; () Ui (x+ 1,y U (x+1y) critical value of 8 at which o}/>~a, vanishes. In Fig. 5 we
: . . . . plot Cl’1 versusp for different values ofy [or 27R/a, of
+Uj(x=i,y)Ui(x=i,y)Uj(x=i+],y), Eq. (2.4]. We see thalC;* linearly decreases, and make

o therefore a theoretical ansatz for the scaling law:
where Pgyy2) denotes a projection operator back onto the

SU(2) manifold. C;'=Dy—D,8. (6.1
We generated 10000 configurations for each simulation

point after thermalization, and the smeared Wilson loopsFor y=4.6, for instance, a? fit yields thatD,=29.16(36)

were measured every 100 configurations for the calculatiomndD,=3.894(77). If the tree level equatidb.1) were cor-

of the static potential. We iterated E¢b.3) 60 times with  rect at the quantum level, too, then it would mean that

e=0.1 in the case of the confining phase, 100 times with vanishes a3=D,/D;=2.35(14) in the deconfining phase.

=0.2 in the case of the Coulomb phase. In Fig. 4 we showrhis would contradict the assumption that in the confining

036002-5
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16 TABLE lll. vy independence of.
Y o
12y 36 5.0366)
4.0 5.0%64)
o 4.6 5.3%78)
T8y 5.0 5.711)
4r for small values ofy, or large values oRA, is of first order
[6,8]. We expect that the first order transition for large values
of RA changes to a crossover transition, and finally to a
0 5 second order transition, as we decrease the vafti®.of

The nonperturbative correctiof6.2) means that the tree
level relationg®= g2/27R should be modified to

FIG. 5. Cl’1 versusg for different y's, WhereC;1 is defined in
Eqg. (5.4). The graph shows the scaling behavior in the Coulomb R gg gé -1
phase. The lines correspond to the linear functi®nd), whereD, 92:_< + a—) (6.4
andD; are given in Table II. 27R 27R
phase the lattice spaciray approaches zero @approaches Since « is large, the correction is not small. The Coulomb
~3.7 for y=4.6 (see Table )l This does not necessarily Phase may be of phenomenological importance, because the
mean that the transition from the deconfining phase to th&olor degrees of freedom do not need to be always confined.
confining one is a first order transition or a crossover transithe SU(2) part of the standard model, for instance, could
tion. It may be well possible that the tree-level fol&1) result from a higher-dimensional Yang-Mills theory in the
receives quantum corrections in such a way that the transcoulomb phase. Then an equation such as(E4) defines
tion is indeed of second order. Therefore, we consider poshe matching condition.
sible quantum corrections ©; * that are consistent with the
scaling law in Fig. 5 and the value @* in the confining VII. CONCLUSION
phase(given Table ). SinceC[l, being dimensionless, can
depend only on the combinatidﬁ/gé, the correction can
only be a constant, i.e.,

In this paper we performed Monte Carlo simulations in a
five-dimensional lattic&&U(2) Yang-Mills theory, where we
compactified one extra dimension. We found that, as the
2 compactification radiusR decreases, the confining phase

Ci'~27RIg2+a or Ci~ Lz (6.2)  Spreads more and more to the weak coupling regime, and the
27R+ ags effective dimension of the theory gradually changes from
five to four. Our data indicate that there exists a maximal

In Table Il we give the results of the fits, from which we radius above which the color degrees of freedom are not
find that the ansatz for the nonperturbative quantum correcconfined. An actual computation of the maximal radius in
tion to the coefficient of the Coulomb potenti&@.4) is con-  QCD will give an important phenomenological constraint for

sistent with our data, and we conclude that model building based on Kaluza-Klein theories. Our data
also indicate that for fixedR/a, the transition from the de-
a=5.1+0.7, (6.3 confining phase to the Coulomb phase is of second order if

R/a, is small enough.

where we have not included the data fer-5.0 in Eq.(6.3), ... The parameter regime we have considered in the present

f i fining to the d fini h : dord ea is expected to be realized: At short distances we have
rom the confining to the deconfining phase IS a Second ord&,q fye_dimensional rotational invariance, and at long dis-

transition is consistent with the data. Note that the transition; nces the Kaluza-Klein excitations decouple so that the
low-energy effective theory is a four-dimensional Yang-Mills
theory. We found no indication that would contradict this
picture. Moreover, the compactified five-dimensional theory,

D D . 2DOF  D./D which is perturbatn_/ely nonrenormallngle, has predictive
L4 0 ! (Buin‘Pnan) X o power (unless examined at very short distances we con-

TABLE Il. Fit for C, defined in Eq(6.1). The fitted lines in Fig.
5 intersect with the3 axis atB=Dg,/D;.

3.6 9.4831) 4.82780) (3.20:4.60 0.103 1.96897)

4.0 10.08300 4.60374) (3.40:4.80 0.0957 2.1010)

46 9.1636) 3.89477) (4.00:5.40 0.0998 2.3514) 3In the case of the phase transition measured by the Polyakov loop
5.0 8.3957) 3.4711) (4.20:5.80 0.175 2.4124) that extends into the fifth dimension, the change from first to second
order happens at a certain valuef8].
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clude from the scaling laws we obsen®eaders are also (one from eachof a five-dimensional theory. The difference

invited to sed17].) is purely nonperturbative. It will be very exiting to investi-
The parameter regime that corresponds to deconstructingate this difference in more detail, especially in supersym-

extra dimension§l4] is not the same as aboy&8]; the two  metric cases, where one already has analytic results, and it is

phases are nonperturbatively separdi@&d8]. In the phase shown that the five-dimensional Lorentz invariance is recov-

for the conventional Kaluza-Klein theory, the vacuum expec-ered[20].

tation value of the Polyakov loopwhich extends into the

fifth dimension is nonz¢r0[8], whilg it vapishes{l8] in the ACKNOWLEDGMENTS

phase for deconstructing extra dimensiofihe phase for

deconstructing extra dimensions is the one in which the layer This work was supported by Grants-in-Aid for Scientific

structure in five-dimensional gauge theories can be realizeResearch from the Japan Society for the Promotion of Sci-

[19].) Although it is not at all clear that the five-dimensional ence(JSP$ (No. 11640266, and No. 1313521®Ve would

rotational invariance at short distances is recovered, it lookike to thank K-I. Aoki, V. Bornyakov, M. Murata, H. Na-

at the moment as if two different confining four-dimensionalkano, M. Polikarpov, G. Schierholz, H. So, T. Suzuki, and H.

Yang-Mills theories could result from two different phasesTerao for useful discussions.
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